

ZERO BIAS SCHOTTKY DETECTORS MODELS 209A, 209B & 209S 100 MHz-18.5 GHz

SPECIFICATIONS

MODEL	FREQUENCY RANGE	FREQUENCY RESPONSE	MAXIMUM VSWR	OUTPUT CONNECTOR	DIMENSIONS
209A	100 MHz - 18.5 GHz	±0.3 dB to 12.4 GHz ±0.6 dB to 18.5 GHz	1.15 to 4 GHz 1.3 to 15 GHz 1.4 to 18.5 GHz	SMA Female	2.24 in. x 0.83 in. dia.
209B	100 MHz - 18.5 GHz	±0.3 dB to 12.4 GHz ±0.6 dB to 18.5 GHz	1.15 to 4 GHz 1.3 to 15 GHz 1.4 to 18.5 GHz	BNC Female	2.51 in. x 0.83 in. dia.
2098	100 MHz - 18.5 GHz	±0.3 dB to 12.4 GHz ±0.6 dB to 18.5 GHz	1.15 to 4 GHz 1.3 to 15 GHz 1.4 to 18.5 GHz	SMC Jack	2.33 in. x 0.83 in. dia.

LOW LEVEL SENSITIVITY $0.5 \text{ mV/}\mu\text{W}$

mV/μW **OPERATING TEMPERATURE**

-54° to +100° C

OUTPUT CAPACITANCE

3 pF

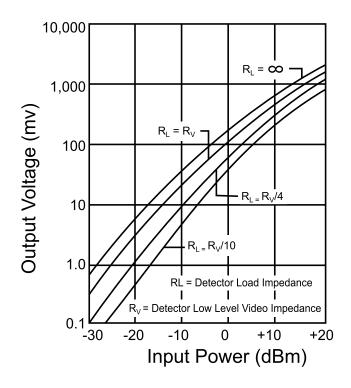
Negative

MAXIMUM INPUT

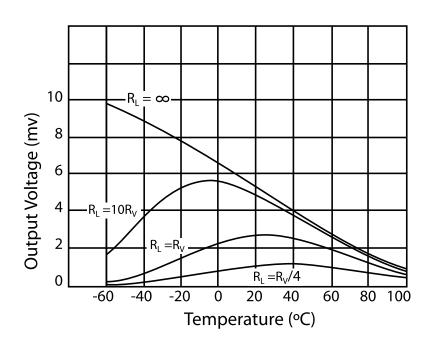
100 mW

For positive output, add "P" to end of Model Number.

INPUT CONNECTORS


OUTPUT POLARITY

N Male



ZERO BIAS SCHOTTKY DETECTORS

TYPICAL OUTPUT VOLTAGE vs. INPUT POWER CURVES FOR VARIOUS R_L/R_V RATIOS at $T_a = 20$ °C

TYPICAL LOW LEVEL (Pin \leq -20 dBm) OUTPUT RESPONSE vs. TEMPERATURE CURVES FOR VARIOUS R_L/R_V RATIOS

Curves are normalized to $R_L = \infty$ and $T_a = 20$ °C, R_v corresponds to the load that drops the open circuit ouput voltage in half (3dB) at 20°C.