

ZERO BIAS SCHOTTKY DETECTORS MODELS 109A, 109B & 109S 10 MHz-18.5 GHz

SPECIFICATIONS

MODEL	FREQUENCY RANGE	FREQUENCY RESPONSE	MAXIMUM VSWR	OUTPUT CONNECTOR	DIMENSIONS
109A	10 MHz - 18.5 GHz	±0.3 dB to 12.4 GHz ±0.6 dB to 18.5 GHz	1.15 to 4 GHz 1.3 to 15 GHz 1.4 to 18.5 GHz	SMA Female	2.24 in. x 0.83 in. dia.
109B	10 MHz - 18.5 GHz	±0.3 dB to 12.4 GHz ±0.6 dB to 18.5 GHz	1.15 to 4 GHz 1.3 to 15 GHz 1.4 to 18.5 GHz	BNC Female	2.51 in. x 0.83 in. dia.
109S	10 MHz - 18.5 GHz	±0.3 dB to 12.4 GHz ±0.6 dB to 18.5 GHz	1.15 to 4 GHz 1.3 to 15 GHz 1.4 to 18.5 GHz	SMC Jack	2.33 in. x 0.83 in. dia.

LOW LEVEL SENSITIVITY	0.5 mV/μW	OPERATING TEMPERATURE	-54° to +100° C
OUTPUT CAPACITANCE	30 pF 100 mW	OUTPUT POLARITY For positive output, add "P" to end of Mo	Negative odel Number.
MAXIMUM INPUT		INPUT CONNECTORS	N Male

ZERO BIAS SCHOTTKY DETECTORS

TYPICAL OUTPUT VOLTAGE vs. INPUT POWER CURVES FOR VARIOUS R_{l}/R_{v} RATIOS at T_{a} =20°C

TYPICAL LOW LEVEL (Pin \leq -20 dBm) OUTPUT RESPONSE vs. TEMPERATURE CURVES FOR VARIOUS R_L/R_v RATIOS

Curves are normalized to $R_{L} = \infty$ and $T_{a} = 20^{\circ}$ C, R_{v} corresponds to the load that drops the open circuit ouput voltage in half (3dB) at 20°C.